Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters








Year range
1.
China Journal of Chinese Materia Medica ; (24): 2467-2473, 2021.
Article in Chinese | WPRIM | ID: wpr-879149

ABSTRACT

Plants have a memory function for the environmental stress they have suffered. When they are subjected to repeated environmental stress, they can quickly and better activate the response and adaptation mechanism to environmental stress, thus realizing long-term stable reproduction. However, most of the relevant studies are applied to crops and Arabidopsis thaliana rather than medicinal plants about the improvement of plant growth status and the effect on phytoalexin biosynthesis. In this study, yeast extract(YE) was used as an elicitor to simulate biotic stress, and the changes in biomass and the content of some secondary metabolites were measured by giving repeated stresses to Sorbus aucuparia suspension cell(SASC). The results showed that the accumulation levels of biomass and some secondary metabolites in SASC subjected to repeated stress are significantly increased at some time points compared with single stress. A phenomenon that SASC can memorize biotic stress is confirmed in this study and influences phytoalexin accumulation in SASC. Furthermore, the work laid the groundwork for research into the transgenerational stress memory mechanism of medicinal plant.


Subject(s)
Cells, Cultured , Secondary Metabolism , Sorbus , Stress, Physiological
2.
Osong Public Health and Research Perspectives ; (6): 415-420, 2017.
Article in English | WPRIM | ID: wpr-644179

ABSTRACT

OBJECTIVES: Rhinoviruses (RVs) cause common cold and are associated with exacerbation of chronic inflammatory respiratory diseases. Until now, no clinically effective antiviral chemotherapeutic agents to treat diseases caused by human rhinoviruses (HRVs) have been reported. We assessed the anti-HRV3 activity of sakuranetin isolated from Sorbus commixta Hedl. in human epithelioid carcinoma cervix (HeLa) cells, to evaluate its anti-rhinoviral potential in the clinical setting. METHODS: Antiviral activity and cytotoxicity as well as the effect of sakuranetin on HRV3-induced cytopathic effects (CPEs) were evaluated using the sulforhodamine B (SRB) method using CPE reduction. The morphology of HRV3-infected cells was studied using a light microscope. RESULTS: Sakuranetin actively inhibited HRV3 replication and exhibited antiviral activity of more than 67% without cytotoxicity in HeLa cells, at 100 μg/mL. Ribavirin showed anti-HRV3 activity similar to that of sakuranetin. Treatment of HRV-infected HeLa cells with sakuranetin visibly reduced CPEs. CONCLUSION: The inhibition of HRV production by sakuranetin is mainly due to its general antioxidant activity through inhibition of viral adsorption. Therefore, the antiviral activity of sakuranetin should be further investigated to elucidate its mode of action and prevent HRV3-mediated diseases in pathological conditions.


Subject(s)
Female , Humans , Adsorption , Cervix Uteri , Common Cold , HeLa Cells , In Vitro Techniques , Methods , Rhinovirus , Ribavirin , Sorbus
3.
Journal of Cancer Prevention ; : 249-256, 2016.
Article in English | WPRIM | ID: wpr-121859

ABSTRACT

BACKGROUND: Sorbus rufopilosa, a tsema rowan, is a species of the small ornamental trees in the genus Sorbus and the family Rosaceae found in East Asia. The bioactivities of S. rufopilosa have not yet been fully determined. The objective of this study is to evaluate the antioxidant and anticancer effects of ethanol extract of S. rufopilosa (EESR) and to determine the molecular mechanism of its anticancer activity in human colon carcinoma HT29 cells. METHODS: To examine the antioxidant activity of EESR, 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity assay was performed. Inhibitory effect of EESR on cancer cell growth and proliferation was determined by water-soluble tetrazolium salt assay. To investigate the mechanism of EESR-mediated cytotoxicity, HT29 cells were treated with various concentrations of EESR and the induction of cell cycle arrest and apoptosis was analyzed by flow cytometry, 4,6-diamidino-2-phenylindole staining, and Western blot analysis. RESULTS: EESR showed significant antioxidant activity and inhibitory effect on HT29 cell growth in a dose-dependent manner. EESR induced cell cycle arrest at G2/M phase in a dose-dependent manner by modulating cyclin B, cyclin-dependent kinase 1 (CDK1), and CDK inhibitor p21 expression. EESR-induced apoptosis was associated with the upregulation of p53, a death receptor Fas, and a pro-apoptotic protein Bax and the activation of caspase 3, 8, and 9, resulting in the degradation of PARP. CONCLUSIONS: EESR possessing antioxidant activity efficiently inhibits proliferation of HT29 cells by inducing both cell cycle arrest and apoptosis. EESR may be a possible candidate for the anticancer drug development.


Subject(s)
Humans , Adenocarcinoma , Apoptosis , Blotting, Western , Caspase 3 , CDC2 Protein Kinase , Cell Cycle Checkpoints , Cell Cycle , Colon , Cyclin B , Ethanol , Asia, Eastern , Flow Cytometry , HT29 Cells , Rosacea , Rosaceae , Sorbus , Trees , Up-Regulation
4.
Natural Product Sciences ; : 98-103, 2015.
Article in English | WPRIM | ID: wpr-182834

ABSTRACT

Pueraiae Radix (PR), Pueratia Folium (PF) and Sorbus commixta (SC) mixture, namely GS-SP (PR (1)/PF (2)/SC (0.5): v/v/v) was developed as hangover-relieving elixir and its effects on alcoholic metabolism have been investigated. The enzymatic activity of alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) of GS-SP was shown higher than those of single treatment with PR, PL, SC, and the positive control group (YM-808). The survival rate of mouse liver cell line NCTC clone 1469 in the presence of acetaldehyde was 30.6, 22.2, and 8.7% at the GS-SP dosage level of 50, 100, and 200 microg/mL respectively. Different concentrations of 50, 100 and 200 mg/kg of GS-SP showed efficient activity for ADH and ALDH than YM-808 in rat fed with 25% ethanol. The levels of blood alcohol and acetaldehyde after oral administration of 200 mg/kg of GS-SP showed efficient activity of 11.7% and 37% than those of YM-808. These results have been supported to the potential for GS-SP to serve as an excellent potential in providing hangover relief and liver protection.


Subject(s)
Animals , Humans , Mice , Rats , Acetaldehyde , Administration, Oral , Alcohol Dehydrogenase , Alcoholics , Cell Line , Clone Cells , Ethanol , Liver , Metabolism , Oxidoreductases , Pueraria , Sorbus , Survival Rate
5.
China Journal of Chinese Materia Medica ; (24): 2019-2023, 2014.
Article in Chinese | WPRIM | ID: wpr-299839

ABSTRACT

Suspension cultures cell of Sorbus aucuparia (SASC) was used as materials, the changes of physiological and biochemical indexes of SASC after treatment with yeast extract (YE) were detected, and the synthetic mechanism of secondary metabolites in SASC treated with YE was preliminarily explored. The results were as follows: under the assay conditions, SASC was induced to synthesize five biphenyl compounds, and these compounds content changed differently with induction time prolonging; YE treatment inhibited cell growth, the culture medium pH was gradually reduced after treatment; water-soluble protein content showed a trend of slow decline, which was significantly increased in YE treatment group (YE group) compared with the control group (CK group), the maximum relative content was 147.76% in contrast with CK group; both YE group and CK group were extracellular Ca2+ flow influx, but the YE group flow was significantly slow than CK group. The results indicate that YE induced the cells in a stress state, which was not conducive to the growth of cells and forced the cells to synthesize biphenyl compounds against external stress; water-soluble protein may serve as intracellular enzymes involved in the synthesis of compounds regulation; Ca2+ may as signal molecule mediate cell signal transduction respond to YE stress.


Subject(s)
Cell Culture Techniques , Methods , Culture Media , Chemistry , Metabolism , Saccharomyces cerevisiae , Chemistry , Secondary Metabolism , Sorbus , Metabolism
6.
China Journal of Chinese Materia Medica ; (24): 175-176, 2009.
Article in Chinese | WPRIM | ID: wpr-298439

ABSTRACT

<p><b>OBJECTIVE</b>To study the chemical constituents of Sorbus tianschanica.</p><p><b>METHOD</b>The compounds were isolated and purified by recrystallization and chromatography with silica gel and resin. Their structures were identified by physicochemical properties and spectral analysis.</p><p><b>RESULT</b>Seven compounds were isolated from the EtOH extraction and six structures were identified as benzoic acid (1), benzyl-O-beta-D-glucopyranoside (2), ursolic acid (3), 2alpha-hydroxyursolic acid (4), hyperoside (5), quercetin-3-O-glucoside (6).</p><p><b>CONCLUSION</b>Compounds 1-5 were isolated from S. tianschanica for the first time.</p>


Subject(s)
Acetates , Chemistry , Organic Chemicals , Sorbus , Chemistry
SELECTION OF CITATIONS
SEARCH DETAIL